Let us consider the influence of the Mach number and the angle of attack on the location of the center of
pressure of models of blunted bodies of small length, In subsonic flow over a model of a segmental body with
R/D =1.46 the center of pressure Cp moves from 2-5 calibers ahead of the model at o =5° to 2.5-20 calibers
behind the model at @ =10° as a result of a change in the sign of the normal force. In supersonic flow over
segments both the angle of attack and the Mach number have a weak effect on the location of the center of pres-
sure, which is located behind the model (by 3-5 calibers for a model with R/D =1.46, for example). For
blunted cones the location of the center of pressure is at a distance of 0.3-1.5 calibers behind the model and
depends little on the blunting radius. With an increase in the Mach number the center of pressure approaches
the model (see Fig. 2c).

In the case of flow over cones having a beveled base the value of ¢p grows as the angle of attack in-
creases. Edges cut off parallel have little effect on the location of the center of pressure of a blunted cone in
the investigated range of Mach numbers and angles of attack.
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DIFFUSION SLIP AND BARODIFFUSION OF A GASEOUS
MIXTURE IN PLANE AND CYLINDRICAL CHANNELS

V. M. Zhdanov and R. V. Smirnova UDC 532.529+532.72 +533.6.011

In the forced flow of a gaseous mixture in a capillary or a porous medium in a field of partial-
pressure gradients, a number of effects occur (the diffusion baroeffect [1, 2], the mixture-sep-
aration effect [3, 4], etc.), a rigorous analysis of which requires the inclusion of Boltzmann's
kinetic equation. The main object of the kinetic consideration in this case is to obtain expres-
sions for the flows of the mixture components, averaged over the cross section of the channel
or referred to unit surface of the porous medium. This problem has been solved in a number
of papers [5-71 for channels of correct geometry (a plane slit or a circular cylindrical capil-
lary) using the linearized kinetic equation with the model BGK integral of the collisions in the
Hamel form [8]. In [9] the flow of a mixture in a plane channel was considered using the ac-
curate linearized collison operator, but subsequent use of the moment method of solution was
confined to the solid-sphere model of the molecules. The limitation of the models used does
not enable the accuracy of the results obtained to be guaranteed, particularly with regard to
such kinetic quantities as the diffusion slip coefficient or the barodiffusion constant of the gas-
eous mixture in the channel. It is well known, in particular [8], that no matter how the param-
eters of the slip in the BGK model for the mixture are chosen, it is not possible to ensure an
adequate description of the diffusion and the viscosity of the mixture simultaneously even for
normal hydrodynamic flow. Below we solve the problem of theflow of a mixture in a channel
using the linearized kinetic equation with the collision operator in the model form proposed by
‘McCormack [10]. The advantage of this model, based on the equivalence of the N-order mo-
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ments of the accurate and the model integrals, is the fact that it automatically gives a correct
description of the mixture in the hydrodynamic limit for an arbitrary interaction between the
molecules. For the case of isothermal flow of the mixture considered here, satisfactory ap-
proximation is obtained for N=2, when the diffusion velocity and the partial tensor of the vis-
cous stresses are defined by the moments of the distribution function, in addition to the density,
the mean-mass velocity, and the temperature. The method of solution used is limited to the
region small Knudsen numbers (Kn=A/d, where A is the effective mean free path of the mole-
cules and d is the characteristic transverse dimension of the channel). In this case the region
of mixture flow in the channel can be divided into two: the region far from the walls where the
usual hydrodynamic approximations hold, and a thin region close to the walls (the Knudsen
layer), the solution in which must be considered taking into account the true boundary condi-
tions for the distribution function on the walls of the channel and the asymptotic conditions on
the external boundary of the layer. The solution of the problem in the external region gives an
expression for the velocities of each of the components of the mixture in the channel with cer-
tain fictional macroscopic boundary conditions on its walls. These conditions are found by
solving the kinetic equation in the Knudsen layer, for which the method of total moments is
used. This formulation of the problem is closely connected with the problem of determining
the diffusion slip velocity of a mixture [11-14], in view of the fact that the consideration begins
with precisely this case. The problem is then generalized to the case of the flow of a mixture
in plane and cylindrical channels when there are both concentration gradients and a gradient of
the total pressure of the mixture present. I is known in this case, in particular, that the baro-
diffusion constant in the expression for the difference in the velocity components averagedover
the cross section is equal to (with opposite sign) the diffusion slip coefficient, which agrees
with the general conclusions of the thermodynamics of irreversible processes [15].

1. Diffusion Slip. Suppose the gaseous mixture occupies the half-splace x > 0 above the plane x=0.
There is a gradient of the partial density of the component k, =1r10£"1 dng Az in the z direction, the total pres-
sure of the mixture p and the temperature T being assumed constant. Far from the walls there is a constant
gradient of the longitudinal mean-mass velocity of the mixture Bug's (x)/9x, normal to the surface of thewalls.
For small values of the gradients, the solution for the distribution function of the particles of the a-sort, can
be sought in the form

fa=190+ @),
19 = 10 3) () exp (= Buv®), Bo = mas2h1,

where & (v, x) satisfies the linearized kinetic equation [14]

P, - 1.1
vzkan + v, 6: = 2 ng)q)a ( )
3
with the collision operator specified in the form [10]
o ( A my \1/z I I
L%)(Da = — YapPo - 2 {Yaﬁ%cz - {Qaz - (‘,ﬁ% ) QﬁzJ Vt(ziﬁ)} Caz + 2 {('Vaﬁ - V% % + vgé%} CaxCazs (1.2)
@ d

where ¢ a= Bg/ %y; YopB 18 a certain effective collision frequency; qqy =B&/Z2 is the dimensionless macroscopic
velocity of the a-component; Il 5, is the partial tensor of the viscous stresses; pg =n,kT, and by definition

Guz = 32 s' Cocz €XP (— cé) Dpdeq,

ey = on.n—alz g‘caxcaz exp (— C&) Dy deg.

The quantities Vo(z% , v 04(,262’ and véf} are given by the expressions

)y 16 Hag 1) __ ngkT

Vap = 3 o ngQug’ == ————man[Dth ,

46 Pop 10 11, Mg
Vap = 3 g, -+ my g [Tgaﬁ‘l”%‘;ﬁiﬁJ’

(3) __ 10 ~11 22
Vi = 5 o ”f*[T «ﬁ“?aﬁ]’



where Qaﬁ are well-known Chapman - Cowling integrals [16]; [D, gly is the coefficient of mutual diffusion of
the & and B molecules (the first Chapman —Enskog approximation [16]); kqp is the reduced mass of the mole-
cules.

Multiplying Eq. (1.1) successively by c,exp(—¢Z) and c.c, exp (— ¢2) and integrating with respect to the

velocities, we obtain the following equations for the moments:

axz ol . . (1.3)
pakav % = E n [Da,ﬂ] uﬁz-'— uaz):
I _ a0 .
> s = — v (1.4)
[

where

aa = (24 ZoR); o = — A B
B 4

Here y,=py/p is the relative concentration of the o component and the qua.ntlty Qqz is defined by the expres-

sion

Qo =2n - ,S.caxcaz exp (_ ca) (Dadcﬂﬂ -9

Far from the walls the distribution function of the a-component must satisfy the well-known Chapman ~
Enskog [16] or Gred [17] expansions. When choosing the model collision integral in the form (1.2), an adequate
description of the gaseous mixture in this region is énsured by specifying f, inthe form of the ten-moment
Gred approximation [17]

3/2

fa::na( )eXp[— Ba(v——u)Z]{i—i——-—wa (V “) +k—T Parc (Ur r)(vs“us)}’ (1.6)

where w, =y —u (uis the mean-mass velocity of the mixture). For the case of slow flow of the mixture con-
sidered, here the linearization (1.6), taking into account the smallness of the quantities ﬂg/zuz,ﬁol/zwaz, 1\ G-
Py , leads to the following result:

as

=12 (14 OF), OF = 20:05 + 2—2= caxtas. (1.mn

Substituting (1.7) into (1.5) and integrating we obtain Q, =q%tsz, i.e., in this region, instead of (1.4), the
following equation holds:

Has auas
g —y, T (L.8)
B f

For a two-component mixture simultaneous solution of Egs. (1.3) and (1.8) leads to the result (a,B8 =1, 2;
a=B)

uas (x)

z. (1.9)

s = uls (0) + = [U%% — U3 (0] 11— exp(— s2)] +

Here u (O) are fictional values of the macroscopic velocities of the components on the wall UaB (x)= uaz(x)
B z(x), and in addition

o _ __ [Dapli e, Yoal[Paply
Uap =— yayﬁ & T e (1.10)

Tla—yaz Yp—1-71- llﬂa 'ﬂr‘znm
o

where |a] is the determinant of system (1.8), and |a|g,, is the cofactor of the element ag, of the determinant.
Note that the quantities 7, agree by definition with the partialviscosities introduced in [17].
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TABLE 1

Variational —~|  Present BGK model
-8 5 method S| paper - - =
gz |9 L—|8 e g |88 B 32
55 (5r | skou 283 wles |, 83 |2ERo|Sualis
B2 [EE .2 B2 |BEs| 2 (BB |1E: |ZEES REHEF
35jc‘;&mﬂ&°& SolgSlog |fcoESD B gk
Hodma e & |8 & [BEES 5125 J|gE x| 0 EET > E&Eme
a 1,00 1,44 | 1,07 | 1,29 {0,946 ‘1,06 1,05 0,735 0,700 10,750 | 0,95
0,688 0,651 10,688
b 0 0,068 0,750 | 0,598 {1,0 0,753 {0,850 | 1,06 1,18 1,00 | 1,05
0,753 0,838 0,750
¢ 2,00 {1,93 |2,00 |{1,9 (2,0 0,995 0,924 0,940 0,667 |1,00
0,995 0,717 114,00

TABLE 2
= o~ Present paper
Mixture Expd. | & 51 by=bz=1 bi#bs
‘ data | § S5 |first second |first second
§ © & |approx. |approx. [approx. | approx.
N,—C,H, 0,073 [22] | 0,10 0,11 0,12 0,093 0,10

0,04 12]
CO,-CH, | 041 [22] | 0,11 0421 | 0,3 — —
Ar—CO, |0026 (2] |0,031 [0040 |0050 |0,0% | 0,04

Below we also require an expression for H(a)':(z, which follows from (1.8) and (1.9)

8ulS(z) 243
B = = a5 — oy [Uad — Uah (0)] exp (— s2). (1.11)

The relations obtained determine the behavior of the fundamental macroscopic quantities of the mixture
cutside the Knudsen layer. They simultaneously completely define the form of the asymptotic distribution func-
tion (1.7) on the external boundary of this layer. Note that in the traditional approach to determining the veloc-
ity of diffusion slip [11-14] the usual well-known Chapman—Enskog [16] or Gred [17] solutions are used as the
asymptotic distribution function, in which the viscous stresses are independent of the diffusion velocities ofthe
components. In fact, this corresponds to the determination of Il .., from equations of form (1.8) in which in-
stead of au%tsz/ 9x we have the derivative of the mean-mass velocity of the mixture 9u®®/8x. Tt can be shown
that in this case it follows from Egs. (1.3) that Uzs =0l =U2 (0). Since U%[% (0) is known, the problem re-
duces to determining the values of the mean-mass (or mean—mofiar) velocity of the mixture on the walls ug‘s (0),
which is also called the slip velocity. In our case U%lsﬁ =ud? —u%sz varies over the cross section of the channel,
i.e., besides u2® (0) or, which is the same thing, to determine independently the quantities ui"f (0) and ug§ (0).
The derivation of relations of form (1.8) is considered in [18], where the occurrence of a dependence of the vis-
cous stresses on the diffusion velocities of the components was associated with the use (within the framework
of the 13-moment approximation) of the expansion of the distribution function in terms of Maxwellian quantities
for the mean partial velocity of the mixture component. It is easy to show, however, that these relations follow
from the usual 10-moment (or 13-moment) Gred approximation if, in the equations for I 4y, in [17], we keep
together with BuZ/Bx the term of the form (2/5)aqaz/3x. In fact, since when there is no temperature gradient
(and neglecting small thermodiffusion corrections) g, =(5/2)pawqyz [17], consideration of this term quickly
leads to (1.8).

We will now determine ud3 (0). We will seek a solution for §, in the form
®, = Cazha(caw z)

and we introduce a distribution function for the incident and reflected molecules such that h,, =h for Cax>0
and h, =h; for c,x < 0.

Assigning the usual Maxwellian conditions for the reflection of the molecules on the walls, we have
hg—,(cam O) = (1 - Km)ha_ (_— Cox, O)v Cax > 01 (1.12)

where n,, is the fraction of the particles of the a-sort, which suffer diffuse reflection at the walls.



The solution for hé‘l will be sought in the form of the expansion
ha =2 3 aia (2) cax,
the coefficients of which satisfy the system of moment equations obtained by multiplying (1.1) by ¢ Xexp( cax),

and /integrating over the whole of velocity space.

We will first consider the approximation (k =0), for which hé =2a oia . In this case

(afmc + a()a) Mox: = —= (aOa - doq) Qaz = Gaz.

V_
The condition on the wall a Oa =(1- '“a ) ay, takes the form

a2 2=y T, (0)
Qa,(o)—‘—'T x% ______a-( . (1.13)

3 Pq,

It is easy to show that the system of moment equations (n =0.1) reduces in this case to equatlons of the form

(1.3) and (1.8), i.e., we can use the solutions (1.9) and (1.11), assuming uas (0) =Uy (0) and 025, (0) =11 47 (0).
Then, condition (1. 13) reduces to a system of two algebraic equations for u (0) and uS (0), by expanding which
we obtam

/ ! a
vp A o T \/2 1 - Mo Ul A Ou, (z)
ua (0) = ba[‘(‘mj‘ TFA Uaﬂ+( P ) 1—§—A(m—é/2pm +bs m)—fu—} (1.14
(a’ 6 = 17 2; a#ﬁ)’
where
kT (172 (m'/20), 1
A= ( 2 ml/z tlz (Dl aly ;i (m1/2b), =b2m11/2y1+ b1m§/2yz;
2 ua )

ba= (cc =1, 2).

We will define the diffusion slip velocity up) as the value of the mean-molar velocity of the mixture ulzn=
3 Yu as x— o, assuming in this case that 3uas (x)/9x=0. We then have
@

up = yuf® (0) + ypuf®* (0) -+ 2T [prd, — U (0)].

Using (1.14), we obtain after simple reduction
m}/‘zbz — mé’zb1

0o de A B 1 b k b 1 ;
up = — 01.41Y5U1z = 013D1, 7+, Opp = At tiE O 0= ), Oz = (ﬂ-‘ _fi_z_) (1.15)

L]

Note that 0-11{2 when by =b,=1 (total differse reflection) corresponds to the diffusion slip coefficient obtained in

[1, 11], and oy is equal to (with opposite sign) the barodiffusion constant in viscous flow obtained in [17].
The calculation of the velocity up in the second approximation (k=0,1) is considered in the appendix,

2. Diffusion and Barodiffusion of a Mixture in a Channel. A Plane Channel. Consider the flow of a mix-
ture in a channel bounded at y = +d/2 by two infinite parallel planes. In the z direction, as previously, there is

a gradient of the partial density of the component kg, and X poke = dp/dz =~ 0. The linearized kinetic equation
(2

for this case keeps the form (1.1), and the equations of moments (1.3) and (1.4) remain true. For small Knud-
sen numbers the solution of Eqs. (1.3) and (1.8), which holds in the region far from the walls at a distance of
the order of several mean free paths, leads to the relations

4 2 0 0 d ch sy
Uy, = —ETT(_Z - ) 7 ul( )+ 2[U12 — Ui (_2-)][ ch (sd/2) }’ .
o ¢h sy d chsy
U12= ul—u2=U12[1 oh (Sdlz)] (_2—) ch (sd/2)°
_ n, dp y‘yz o d sh sy
Mz = — _nl & T Tam [ (2) ch (sdf2) ' (2.2)
sz = Hixz -+ Hle ==Y 72—’
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where d d d
B(g)=u'(g) - ()

v = — ek [dy‘ + GliYs— 7‘:1]' op = —ofs.

We will introduce the variable x =y +d/2 and consider the behavior of the quantities (2.1) and (2.2) close
to the lower wall for x ~ 5, where 6 is the effective thickness of the Knudsen layer. Note that the quantity s is
of the order of the inverse mean free path, i.e., sd>»>1. Using the condition & /d>>1, we obtain that the expres-
sions (2.1) and (2.2) on the external boundary of the Knudsen layer reduce to the expressions (1.9} and (1.11),
which were used in the slip problem, with (—~d/27 )dp/dz replaced by 8u%s (x)/8x. Then, the problem of de-
termining uas (d/z) reduces to that considered above, and we can use the results already obtained.

We will find an expression for the mean-molar Velomty in the channel. Averaging u,;, and uy, over the
cross section of the channel, we have

a2 d d d\ — d
(udy = — df + yyui (7) + Youin; (T} + T'Iﬁ'l—;l—m—y-g [U(ilz - U3 (—2*)]

Using the results corresponding to the first approximation of the moment method (expression (1.14)), we ob-
tain after simple reduction

P d
Wt == (4 80)% et

where

1 (mET\V2 4 Lh L5 n A
B= 2?(7) T4 (bl iz, + 5, TER + by gy )

and oy is found from expression (1.15). Here, in the final expression we have omitted terms ~ (sd)~! com-
prared with unity.

It is also of interest to have an expression for the difference between the velocities of the components of
the mixture averaged over the cross section. Using (2.1) and neglecting terms ~ (sd)~! compared with unity,
after averaging, we obtain

Cubre = Cudoe = Uy + U () 2.

dz

t

Using (1.14) with 8u3S(x) /8x replaced by ( d/Zn) we obtain

as| d A *
Ui;(T): [ to+ 5 2 [szha ! ‘;1:],

where
ap = ab 4 af, af = — o,
As aresult, we have |
Wore = (s = U - 7 Duchey - = — o[y = 2] (2.3)
where
A S 1 b

Op = Op.

TFA%2 154
Hence, the barodiffusion constant in the expression for the difference between the velocities of the com-
ponents averaged over the cross section turns out to be equal to (with opposite sign) the diffusion slip coef-
ficient (or the coefficient of the concentration gradient in the expression for the mean-molar velocity of the
mixture). Note that this result agrees with the conclusions of the thermodynamics of irreversible processes
[15], where o4y and Qp are Cross coefficients satisfying Onsager's relations. The analysis given above also
explains why the value of o, differs from the barodiffusion constant in viscous flow ozb9 calculated in [17].
Although the 13-moment Gred approximation used in this paper has enabled us to take into account the effect of
viscous momentum transfer in diffusion (which leads to ob differing from the values given by the first approxi-
mation of the Chapman —Enskog method [16]) the relations for Il,x, take their usual form irrespective of the

diffusion velocities of the components., As already mentioned, this leads to the condition Uy,=Ui (—g—) = U,
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and subsequent averaging over the cross section of the channel does not change the result. The expression ob-
tamed above for the difference between the averaged velocities contains, together with UY,, the term

~ (sd)"‘U ( ) When there is no total pressure gradient U} ( 3 ) ~ U 12, andthis term can be neglected. Howz

d
ever in general, Uiz( ) contains a term proportional to  (u),, — {u)>,,, which makes a contribution to the
- difference sdp~!(dp/dz), comparable with the contribution from the barodiffusion term to Uiz-

. A Cylindrical Channel., Consider the flow of a mixture in a circular cylindrical channel of radius R (the
z axis is directed along the axis of the cylinder). The equations of moments in a cylindrical system of co-
ordinates take the form '

ok T '
Pokq + r ar (rTgpz) = 2 :[1'; ol (up; — Uq,); . (2.4)
I
;aaﬁ_‘:ﬁg= — Yoba “2[ I ( sz)"'—QaJ] 2.5
Far from the walls Quz =9z, 2nd Eq. (2.5) becomes
II " 'a ’
; Qap __5;_ =—Yup (rug,). (2.6)

For a two-component mixture simultaneous solution of Egs. (2.4) and (2.6) g’tves

1d
the = — g G (R =79+ uE (F) + (0% — U (R)] [1—Lelen] @.7)
1, I
i V| R ] - VB2
2
_ r n; dp viv3 I
Hlxz"———é_?l"a?_l;ﬁi [sz—— ?S(H)]I:((:;{))a (28)
I, = H1x1+H2xz -

2 dz’
where I (x). are the modified Bessel functions.

In the layer close to the wall of thickness 6§ <R, Egs. (2.4) and (2.5) can be replaced by Egs. (1.3) and
(1.4). I can also be shown that Eqs. (2.7) and (2.8) on the external boundary of the Knudsen layer reduce to
Egs. (1.9)-(1.11). Hence, in this case also the problems of determining U’ (R) reduces to the problem con-
" gidered above of the slip of a mixture on a plane wall. Averaging the expressions for u 1z (@) and u,, (r) over
the cross section of the channel, and using for ul$ (R) the quantities (1.14) with du2S(x)/9x replaced by (R/
.27)dp /dz we obtain

R2 d
udy = — (_85 + BR) 71% - 0'12y1y2U(1'2-

The expression for <‘11z>" {u,,) has the same form as (2.3) in the problem of the flow inaplane channel, i.e.,
the barodiffusion constant ap=- oy is independent of the channel geometry.

3. Discussion of the Results and Comparison with Experiment. I is convenient to compare the values of
ayg (or ozp) obtained above with the results obtained by other methods using the example of a mixture with a
small relative difference between the masses and the scattering cross sections of the molecules of the com-
ponents, For the solid-sphere molecular model the expression for o, can be represented in the form

my — My b dl — dg bl i bz (3 -1)

L=l T, T d T d, Ch by

where m, and d, are the mass and effective diameter of the molecules of the a-sort. In (3.1) we have also
taken into account the possibility of small differences in the nature of the interaction between molecules of dif-
ferent sorts and the walls. In Table 1 we give values of a, b, and ¢ calculated using the general expressions for
019 obtained by the different methods. For the case of the BGK model the effective collision frequencies ¥y
and yop were specified in the form ’

/! 1/2
Yaa = Adg, (J;,L_kT)i znaa Yab = daﬂ (2$AT> ng, dep = (dq + dp)/2,
3
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where A=16/3 and 16/5 (the first and second rows, respectively), which corresponds to the usually employed
choice of these quantities [13, 7]. For A =16/3 the values of a, b, and ¢ are practically independent of the con-
centration, and for A =16/5 in Table 1 we give the values corresponding to y;=y,=0.5. The use of the same
model parameters to calculate the second approximation for the McCormack model (the present paper*)
showed that for a 50% mixture the results are practically insensitive to the choice of the model parameters.
This is also confirmed by calculations for the case when v, and y,g are specified in the form described in
[10] for the third-order model. Two approximations of the varlatlonaf method correspond to the results in [14]
considering and ignoring corrections of the order of the thermodiffusion constant (taking these corrections into
account in our scheme would correspond to the use of the McCormack model with N=38), In the last column of
Table 1 we give empirical values of a and b obtained by processing experimental data on the diffusion-phoresis
of oil drops in gaseous mixtures of nonuniform concentration [22]..

It follows from the results that the different methods of calculation give fairly close values of the coef-
ficient a, but the BGK model seems to be less satisfactory in this respect. The coefficient b is more sensitive
to the chosen approximation, and methods which do not take into account the variation in the distribution func-
tion in the Knudsen layer [1, 12] give quite different results.

Note that the results of the present paper and the calculations based on the BGK model lead to a weaker
dependence on the differences between the reflection coefficients at the wall,

The closeness of the results of the first approximation of the present paper and of the variational method
is noteworthy. An analysis of the general expression for 01;’ in [14] shows that when the thermodiffusion cor-
rections are neglected the corresponding expression for Tig (for by=by=1) in our notation has the form

— off -+ s L (ol 4 o).
On the other hand, the parameter A in Eq. (1.15) varies in the range 0.88~1.15 for arbitrary ratios of the
masses and the concentrations of the components. For an isotopic mixture A = (57)! 2/4=0.99, which also.
demonstrates the above-mentioned closeness of the results.

It should be noted that for actual interaction potentials of the molecules the thermal-diffusion corrections,
as a rule, are considerably less than for the sphere model, so that the use of the second approximation of the
‘method of moments may be more important in some cases than taking these corrections into account.

A wide-ranging comparison of the experimental and theoretical values of o4y for a number of mixtures
has been made in [19, 21]. These mainly use the results on diffusion-phoresis of suspended particles [22] and
measurements of the diffusion baroeffect [2, 20]. Within the limits of the accuracy of the experimental data the
theoretical results for oy, (like calculations based on the variational method [14]) are in satisfactory agreement
with experiment. Mixtures with very close molecular masses of the components (N~ CoH,, CO,~ CgH,, Ar —
COy) are of particular interest. For these mixtures the direction of motion of the particles in diffusion-phoresis
and also the diffusion baroeffect (the occurrence of a difference in pressure for flow through a capillary of a
gaseous mixture of nonuniform concentration) have a sign which is opposite to that which is predicted by ele-
mentary theory [1]. Table 2 shows that the results of calculations of the values of o, for three mixtures are
in satisfactory agreement with experimental data. In the calculations we used the molecular interaction param-
eters described by the Lennard-Jones potential. The quantitative agreement with experiment can be improved
by assuming that the nature of the reflection of the molecules from the walls is different. In the last two rows
of Table 2 we give values of o4, in the first and second approximations for which we used experimental values
of K =by/b, obtained in [4] from the results of measurements of the separation of mixtures of Ny—-CoH, (K=
1.035) and Ar ~CO, (K=1.011) for molecular flow of these mixtures in circular cylindrical capillaries (Kn>1).

Experiments on the separation of a mixture in another limiting region (Kn<«1) can also be used in prin-
ciple to determine the barodiffusion constant ap [12, 23]. Unfortunately, the results obtained in [4] cannot be
extended into the region of fairly small Knudsen numbers. Nevertheless, the observed change in sign of the
effect for an Ny— C,H, mixture for Kn ~ 1 and the order of magnitude of the effect for Kn < 1 are in satisfactory
agreement with caleulations using the value ap=- 0y,. A similar change in sign, not observed in [4], would be
expected for Kn < 1 in an Ar —CO, mixture, to which attention has already been drawn in [23].

Appendlx We will calculate the rate of diffusion slip in the second approxtmatlon (k=0.1), when h
2(a ;; +a ioz Instead of the equations for the coefficients a i, and ajy is more convenient first of all to
deal with a sys}%em of equations for the moments M(n) which are defined in the form

*The results of the first approximation, as is seen from (1.15), generally are independent of the arbitrary
parameters of the model.
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In this case the equations of moments (1.3) and (1.4), in which Gar ="y L MQ, My, =py Mg), and Qg = M%), must
be supplemented by two equations of the form N

n .
(IW = _) ﬂUZVa 9oz — Quz)s
T [§}
F{;‘ (qaz - Qaz) = ‘2— éb/ZYa (]”a -3 _;_xz>’
&%
where Ma—ZM( ) Ya=Yor +Yap (@, B=1,2).
Condition (1.12) leads to the following relations for the moments on the wall (x=0);

(G 7) gy (0) + b2 maze 8] “m — (@~ 1) Qqy (0) =

2n!/2q,,. (0)— by, (4 — 3m) &;;i_ + by (2— 71) M, (0) = 0. ' _ (A1)

As aresult, to determine q,,, Qg z, Qgzs 11 axzs and M, (¢ =1.2) we have a system of eight equations
with boundary conditions (A.1), and the conditions that the requlred functions should be bounded as x — <,
- This system is solved by reducing it to an eight-order equation in Q,,. The results obtained for the casewhen
9u2S (x)/9x =0 can be represented in the form

Q.= i’znzchexp(—xkxwﬁ“zA*U‘fz, ~ *-2
0u = — % 3 Cuoxp (=) + B2(As — 1) U,

2
hnlacz:—' Hzxz = £n hz}i Ch"'h exp (— A'k~7:)'»

3

2z = Qaz —

o k=1
Q (20" 3
M= (ﬁ——;’ Mfan — (— 1)“-}%1') Cihy 0xp (— Mz) = 1, 2,
k=1 \PaVa o

1 - _DP1Ps .
s2(Bavs — ﬂm) DLk’

where g=s"2D; D*=

far =M — Bp¥iM — D [v*xi + (Bp"“ + -2 ﬂ““ — vBor} )]
) o

A =9,/p,+ ve/pe+1/8 (@, B=1,2; ﬁ.xoc).

In this case Ay are the positive roots of the equation

A — ZiM - ZA — Z, = 0,

where-

¥ B '\'H 5 2.2
Zy = Dy* + ﬁl?i + ﬁz’YZv Z,= D [51};?2 + 2P1 1] s* (52?2 + ﬁl‘Y%) + ﬁipg'l’%?g, Zs = s"B,Bsv1va.

Substituting the boundary conditions (A.1) into (A.2) we obtain a system of four linear algebraic equations
for Cy, C,, Cy, and A*. Note that to determine the rate of diffusion slip up it is sufficient to find the constant

A*. 1In fact
up = lim (B 2y10y, + B7 V2.0..) = (4% — y,) Uls

X—»00

or
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Because of the complexity of the expression for A* described using the corresponding fourth-order deter-
rainants, it will not be given here. The results of specific calculations of o, in the first and second approxi-
mation for certain special cases are given in Tables 1 and 2.
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