
Let us consider  the influence of the Much number and the angle of attack on the location of the center  of 
p r e s s u r e  of models of blunted bodies of smal l  length. In subsonic flow over a model of a segmental  body with 
R / D  =1.46 the center  of p r e s s u r e  Cp moves f r o m  2-5 ca l ibers  ahead of the model at a =5 ~ to 2.5-20 ca l ibers  
behind the model at a =10 ~ as a r e su l t  of a change in the sign of the normal  force.  In supersonic  flow over 
segments  both the angle of at tack and the Mach number have a weak effect on the location of the center  of p r e s -  
sure ,  which is located behind the model (by 3-5 ca l ibers  for a model with R /D =1.46, for example). For 
blunted cones the location of the center  of p r e s su re  i s  at a distance of 0.3-1.5 ca l ibers  behind the model and 
depends little on the blunting radius .  With an increase  in the Mach number the center  of p r e s su re  approaches 
the model (see Fig. 2c). 

In the case  of flow over cones having a beveled base the value of Cp grows as the angle of attack in- 
c reases .  Edges cut off paral le l  have little effect on the location of the center  of p r e s s u r e  of a blunted cone in 
the investigated range  of  Much numbers  and angles of attack. 
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D I F F U S I O N  S L I P  A N D  B A R O D I F F U S I O N  O F  A G A S E O U S  

M I X T U R E  IN  P L A N E  A N D  C Y L I N D R I C A L  C H A N N E L S  

V. M. Z h d a n o v  a n d  R .  V.  S m i r n o v a  UDC 532.529 +532.72 +533.6.011 

In the forced  flow of a gaseous mixture  in a cap i l la ry  or  a porous medium in a field of par t ia i -  
p r e s s u r e  gradients ,  a number  of effects occur  (the diffusion baroeffec t  [1, 2], the mix tu re - sep -  
arat ion effect [3, 4], etc.),  a r igorous  analysis  of which requ i res  the inclusion of Bol tzmann 's  
kinetic equation. The main object of the kinetic considerat ion in this case  is to obtain expres -  
sions for  the flows of the mixture components ,  averaged over  the c ros s  section of the channel 
or  r e f e r r e d  to unit sur face  of the porous medium. This problem has been solved in a number 
of papers  [5-7] for channels of c o r r e c t  geomet ry  (a plane slit o r  a c i r cu l a r  cyl indrical  capi l -  
lary) using the l inear ized kinetic equation with the model BGK integral  o f  the coll isions in the 
Hamel f o r m  [8]. In [9] the flow of a mixture  in a plane channel was cons idered  using the ac-  
cura te  l inear ized coll ison opera tor ,  but subsequent use of the moment  method of solution was 
confined to the so l id - sphere  model of the molecules .  The l imitation of the models used does 
not enable the accu racy  of  the resu l t s  obtained to be guaranteed,  par t i cu la r ly  with r ega rd  to 
such kinetic quantities as the diffusion slip coefficient or  the barodiffusion constant  of the gas-  
eous mixture  in the channel. It is well known, in par t icular  [8], that no mat ter  how the p a r a m -  
e te rs  of the sl ip in the BGK model for the mixture  a re  chosen,  it is not possible to ensure  an 
adequate descr ipt ion of  the diffusion and the v i scos i ty  of the mixture s imul taneously  even for 
normal  hydrodynamic flow. Below we solve the problem of theflow of a mixture in a channel 
using the l inear ized kinetic equation with the coll ision opera tor  in the model f o r m  p r o p o s e d b y  
MeCormack [10]. The advantage of this model,  based on the equivalence of the N-order  too- 
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mehts of the accu ra t e  and the model  integrals ,  is the fact  that it automatical ly  gives a c o r r e c t  
descr ip t ion of the mix ture  in the hydrodynamic l imit  for an a r b i t r a r y  interact ion between the 
molecules .  For  the case  of i so thermal  flow of the mixture  cons idered  here ,  sa t i s fac to ry  ap- 
proximat ion is obtained for N=2,  when the diffusion veloci ty  and the par t ia l  tensor  of the v i s -  
cous s t r e s s e s  a re  defined by the moments  of the distr ibution function, in addition to the density,  
the m e a n - m a s s  veloci ty,  and the t empera tu re .  The method of solution used is l imited to the 
region Small Knudsen numbers  (Kn =h/d, where  X is the effective mean f r ee  path of the mole-  
cules and d is the cha rac t e r i s t i c  t r a n s v e r s e  dimension of the channel). In this case  the region 
of mixture  flow in the channel can be divided into two: the region far  f rom the walls where the 
usual hydrodynamic approximations hold, and a thin region close to the walls (the Knudsen 
layer) ,  the solution in which must be cons idered  taking into account the t rue  boundary condi- 
tions for  the distr ibution function on the walls of the channel and the asymptot ic  conditions on 
the externa l  boundary of the layer .  The solution of the problem in the external  region gives an 
express ion  for  the veloci t ies  of each of the components of the mixture  in the channel with c e r -  
tain f ict ional  macroscop ic  boundary conditions on its walls. These  conditions are  found by 
solving the kinetic equation in the Knudsen l ayer ,  for  which the method of total moments  is 
used. This formulat ion of the prob lem is c lose ly  connected with the problem of de termining 
the diffusion slip veloci ty  of a mix tu re  [11-14], in view of the fact  that the considerat ion begins  
with p r ec i s e ly  this case.  The p rob lem is then general ized to the case  of the flow of a mixture  
in plane and cyl indr ica l  channels when there  a re  both concentrat ion gradients  and a gradient of 
the total p r e s s u r e  of the mix tu r e  present .  It is known in this  case ,  in par t icu la r ,  that t h e b a r o -  
diffusion constant  in the express ion  for  the d i f ference  in the veloci ty  components averaged over  
the c ro s s  sect ion is equal to (with opposite sign) the diffusion sl ip coeff icient ,  which agrees  
with the general  conclusions of the thermodynamics  of i r r e v e r s i b l e  p rocesses  [15]. 

1. Diffusion Slip. Suppose the gaseous mixture  occupies the ha l f - sp lace  x > 0 above the plane x=0 .  
T h e r e  is a gradient  of the par t ia l  densi ty  of the component k a =ha-1 dna/cLz in the z di rect ion,  the total  p r e s -  
su re  of the mixture  p and the t empe ra tu r e  T being assumed constant.  Far  f r o m  the walls there  is a constant 
gradient  of the longitudinal mean -mass  veloci ty  of the mixture  auzaS(x)/Ox, normal  to the sur face  of thevealls. 
For  smal l  values  of the gradients ,  the solution for  the distr ibution function of the par t ic les  of the a - s o r t ,  can 
be sought in the f o r m  

1~ _- 1(o) (i + r 
1(2) IS w2 

= (z) / :2- )  , xp  ( -  = , w 2 k r ,  

where  4, a(v,  x) sa t i s f ies  the l inear ized  kinetic equation [14] 

aq)~ (1.1) 
vzko~ "Jc vx 8x -- Z ~'(~)'~ 

with the coll is ion opera to r  specif ied in the f o r m  [10] 

3'a~q~: qa~ -- { r% ~ti2 ] 
-a~','e= -- ya,(l)~-b 2 -- ~--~ ) q,~J ~,(~}ca._ + 2 (ye~--ve~l--~-a -b e , 7 ~  ]caxcr (1.2) 

where  e a = fl~,/2v; Taft is a ce r ta in  effect ive coll is ion frequency;  qaz  =fl la//z~ is the dimensionless  macroscopic  
veloci ty of the ~-component ;  Hax  z is the par t ia l  tensor  of the viscous s t r e s s e s ;  Pa =nakT,  and by definition 

~ 

The quantities u( '~,  u(~, and u(a~ a re  given b y t h e  express ions  

(t) t6 ~1r162 6 t~c)( t l )  n 6 k T  
' r a f t - -  3 m( z .~p~a[~ - -  m a n [ D a , ~ ] l  ~ 

"valt 5 m a "?- rn[3 met ' 
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l r  
where  ~ f l  a re  well-known Chapman-Cowl ing  integrals  [16]; [Dafl] 1 is the coeff icient  of mutual diffusion of 
the a and fl molecules  (the f i r s t  Chapman-En sk o g  approximation [16]); Pai l  is the reduced  mass  of the mole-  
cules .  

Multiplying Eq. (1.1) success ive ly  by Czexp (--  e2=) and c~c~ exp (--  c~) and integrat ing with r e s p e c t  to the 

ve loc i t ies ,  we obtain the following equations for  the moments :  

0Haxz ~ n~nl~kT (1.3) 
p~zk~-}- ox = ~ [D~[~]--------- 7 (uf~z:-- u=z); 

y~ -- ~w ~ ,  (1.4) 

where  

a _ Ycz/~(2) _ v(3) (2)~ Yr162 (3) 
= ~ ) ;  a ~ , = -  7 I ~ .  

Here  Ya = P a / P  is the r e l a t i ve  concentra t ion of the a component and the quantity Qaz is defined by the exp re s -  
sion 

Q=~ = 2a -~/2 J" c~c~ exp ( - :  e~) O~de~. (1.5) 

Far  f r o m  the walls the distr ibution function of the a -componen t  must  sa t i s fy  the well-known Chapman - 
Enskog [16] o r  Gred  [17] expansions.  When choosing the model coll is ion integral  in the fo rm (1.2), an adequate 
descr ip t ion  of  the gaseous  mix tu re  in this region  is ensured  by specifying f a  in the fo rm  of the t en -moment  
Gred approximat ion [17] 

(1~3/2 [ m, z m s n,~,, (v,.--u,)(v~--u~)] (1.6) f~:=n~z\-f~-/exp[--~a(v--u)2] t + - ~ w a ( v - - u )  -~ kT p--~- 

where  w~ =11 a - u  (u is the m e a n - m a s s  ve loc i ty  of  the mixture) .  For  the case  of slow flow of the mixture  con-  
1/~ ~ ~ / s idered ,  he r e  the l inear iza t ion (1.6), taking into account the smal lness  of the quantities fla Uz, f i g  Waz, IIaxz 

p ~ ,  leads to the following re su l t :  

/~s =/(0)( i  + (1)a), (1)~ s : 2cc~q,~: + --~ca~c~.  (1.7) 

a s  Substituting (1.7) into (1.5) and integrat ing we obtain Qaz = q a z ,  i .e. ,  in this region,  instead of (1.4), the 
:following equation holds:  

a ~  n~=y~ = - - Y ~  0x �9 (1.8) 

) 'or  a two-component  mix ture  s imultaneous solution of Eqs. (1.3) and (1.8) leads to the r e su l t  (a, fl = 1, 2; 

u" - ug  (0) + - ~  [u~ u "s ~ (~) ~z -- --  ~ (0)] [1-- exp (-- sx)] + ~ x. (1.9) 

a s  Here  as (0) a re  f ict ional  values of the macroscop ic  veloci t ies  of the components  on the wall u a ~  (x) =Uaz(X)- U a z  
U~z (x)) and in addition 

U~ = [D~]I ffYa S 2 ~ Y(zYfJ [nu[~h 
YaY~ dz ' P I a I ~l (1.10) 

2 
vl~ = y~ Z l a l ~  

~--t c~ 

where  [a] is the de terminant  of sys t em (1.8), and [a[Ba is the cofac tor  of the e lement  ari a of the determinant .  
Note that the quantit ies 77 a ag ree  by definition with the  pa r t i a lv i seos i t i e s  introduced in [17]. 
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TABLE 1 
Variational method I, ,~ Present 
r14; 191 ~ ~.~ paper . 

i 0 ~ 0 

�9 ~ ' ~  o ~ o o  , ~ ,  

BGK model 

a 1,00 1,t4 t,07 t ,29 0,946 1,06 1,05 0,735 
0,688 
1,06 b 0 0,068 0,750 0,598 t,0 0,753 0,850 
0,753 

c !,93 2,00 0,995 0,924 0,940 2,00 1,90 2,0 0,995 

0,700 0,750 
0,651 0,688 
t,t8 t,00 
0,838 0,750 
0.667 t,00 
01717 t,00 

0,95 

1,05 

TABLE 2 

Mixture 

N~--C2H4 

C02--CaH s 
At--CO 2 

Exptl. 
data 

0,073 
0,04 [7211 
0,ti .[22l 
0,026 [2] 

II 
"~o~ 

0,t0 

0,tl 
0,031 

Present paper 

b t = b 2 = t  

first second 
approx, approx, 

0,ti 0,i2 

0,t2] 0,t3 
0,040 ' 0,050 

second 
!:approx. approx. 

0,093 0,t0 

0,034 0,044 

as 
Below we also r e q u i r e  an express ion  for  I I axz ,  which follows f r o m  (1.8) and (1.9) 

YaY~ r o ~  a s  ii ~ = - -  ~l~ ox l a 1~ 1 s [Uar - -  V ~  (0)J exp (-- sz ) .  ~ x z  (1.11) 

The re l a t ions  obtained de t e rmine  the behav ior  of the fundamental  m a c r o s c o p i c  quanti t ies of the mix tu re  
outs ide  the Knudsen l aye r .  They s imul taneous ly  comple t e ly  define the f o r m  of the asympto t ic  dis t r ibut ion func-  
tion (1.7) on the ex te rna l  boundary  of this l aye r .  Note that in the t radi t ional  approach  to de te rmin ing  the ve loc -  
icy of diffusion s l ip  [11-14] the usual  wel l -known C h a p m a n - E n s k o g  [16] or  Gred  [17] solutions a re  used as the 
a sympto t i c  d is t r ibut ion function,  in which the v iscous  s t r e s s e s  a r e  independent of  the  diffusion ve loc i t ies  of the 
components .  In fac t ,  this c o r r e s p o n d s  to the de te rmina t ion  of I I ax  z f r o m  equations of f o r m  (1.8) in which in-  
s tead  of 8 u a S / a x  we have the de r iva t ive  of  the m e a n - m a s s  veloci ty  of the mix tu re  OuzaS/sx. It can be shown 
that in th is  case  it follows f r o m  Eqs. (1.3) that  u a ~  = U ~  =Ua~  (O). Since u a ~  (0) is known, the p r o b l e m s r e -  
diuces to de t e rmin ing  the values  of the m e a n - m a s s  (or m e a n - m o l a r )  ve loc i ty  of  the mix tu re  on the walls  u z (0), 
which is a lso  ca l led  the s l ip  veloci ty .  In our  case  U asafl =uaSaz -uaSfl z v a r i e s  ove r  the c r o s s  sect ion of the channel,  

as  (0) o r ,  which is the s a m e  thing, to de t e rmine  independently the quanti t ies u ~ ( 0 )  and U~z s (0). i .e. ,  bes ides  u z 
The  der iva t ion  of r e l a t i ons  of f o r m  (1.8) is cons ide red  in [18], where  the o c c u r r e n c e  of a dependence of the v i s -  
cous s t r e s s e s  on the diffusion ve loc i t ies  of the components  was assoc ia ted  with the use  (within the f r a m e w o r k  
of the 13-moment  approximat ion)  of the expansion of the distr ibution function in t e r m s  of Maxwellian quanti t ies 
for  the mean  par t i a l  ve loc i ty  of the mix tu re  component.  It is e a sy  to show, however ,  that t hese  r e l a t ions  follow 
~com the usual 10 -momen t  (or 13-moment)  Gred approximat ion  if, in the equations for  I I a x  z in [17], we keep  
0~gether with aUz/0X the t e r m  of the f o r m  (2 /5)aqaz /OX.  In fact ,  s ince  when t he r e  is no t e m p e r a t u r e  gradient  
(and neglec t ing  sma l l  thermodif fus ion  co r rec t ions )  qaz  = (5/2)paWaz [17], cons idera t ion  of this t e r m  quickly 
leads  to (1.8). 

We will now de t e rmine  uazaS (0). We will  seek  a solution for r a in the f o r m  

(I)~ = c~zh~(c~:r x) 

and we introduce a dis t r ibut ion function for  the incident and re f l ec ted  molecu les  such that h a =h + for  Cax > 0 
and h a = h ~  f o r e a x < 0 .  

Ass igning  the  usual  Maxwell ian conditions for  the re f lec t ion  of the molecu les  on the wal ls ,  we have 

h~ + (ca~, 0) = (i -- x~)h~- (-- c~, 0), c:.~ > 0, (1.12). 

where  ~r is the f rac t ion  of the pa r t i c l e s  of the a - s o r t ,  which suffer  diffuse re f lec t ion  at the walls .  
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The solution for  h i will be sought in the f o r m  of the expansion 

h=0 

the coeff ic ients  of which sa t i s fy  the sy s t em of  moment  equations obtained by mult iplying (1.1) by  c n x  exp(-C~x),  
and integrat ing over  the whole of ve loc i ty  space.  

:~ =2a~a. In this case  We will f i r s t  cons ider  the approximation (k = 0), for  which h a 

i + P~ (as  Qo~,=qaz. = + = 

The condition on the wall a ~~ = (1 - u  a ) a 0a takes the f o r m  

n~/2 2 - u~ rI~: (0) (1.13) 
qa: (0) -- 2 • Pa 

It is e a sy  to show that the sy s t em of  moment  equations (n =0.1) r educes  inthis  case  to equations of the fo rm 
(1.3) and (1.8), i .e . ,  we can use the solutions (1.9) and (1.11), a ssuming  u as (0) =u a (0) and I I~x  z (0) =IIaxz(0).  
Then,  condition (1.13) r educes  to a sy s t em of two a lgeb ra i cequa t ions  for  u~ s (0)andu2 as (0), by expanding which 
we obtain 

u~ ~C O)=b~[ m~/2y~ A ,nkT\,/2 i (. ~ n A )auz ~ (~)] 
' + A v& + I - r - )  + (1.14) 

(a, ~ = i, 2; a :/= ~), 

where  

ml/Z~l/2 s[D1,h " (mll2b)u = b2m~/2Yl ~ bim~lZY~; 
i "'2 

b~-- x~ (~ = I,.). 

We will define the diffusion slip velocity uDas the value of the mean-molar velocity of the mixture u m = 

~Y~u~ as x--~ o% assuming in this case that 8uz as (x)/Sx=0. We then have 

u"'0" [u~ - C0)]. u ~  = y l u ~  s (0 )  -t- Y2 2 ~ J + n 

Using (1.14), we obtain af te r  s imple  reduct ion 

~112~, ~l/2h 
A k t. b ""i ~a - - " ' 2  ~I b ' Q~]x "q.2) 

ut)=--a12YxY~U~2=al~Dl~ ' (~1~= i--'~"K~12~1--"+ Weq2' ~ 2 =  (mi/2b)y ' ~12=-~ " ~ 1 - - ~ "  (1.15) 

Note that  ak2 when  b l = b 2 = l  (total d i f fe r se  ref lec t ion)  co r r e sponds  to the diffusion sl ip coeff icient  obtained in 
D [1, 11], and ff12 iS equal to (with opposi te  sign) the barodfffusion constant  in viscous flow obtained in [17]. 

The calculat ion of the qe loc i ty  u D in the second approximation (k =0,1) is cons idered  in the appendix. 

2. Diffusion and Barodiffusion of a Mixture in a Channel. A Plane Channel, Consider the flow of a mix-  
tu re  ha a channel  bounded at y = +d/2 by  two infinite para l le l  planes. In the z di rect ion,  as previously ,  there  is 

a gradient  of the par t ia l  densi ty  of the component  ka ,  and ~.apaka = d p / d z = / =  O. The l inear ized  kinetic equation (z 
for  this case  keeps the f o r m  (1.1), and the equat ions  of moments  (1.3) and (1.4) r ema in  t rue .  For  smal l  Knud, 
sen numbers  the solution of  Eqs. (1.3) and (1.8), which holds in the region far  f r o m  the walls at a dis tance of 
the o rde r  of s eve ra l  mean  f r ee  paths,  leads to the re la t ions  

= - -  "~  I-~" ~- [-,2 chT~-2) ]' (2.1) Ulz 

chsy ] uasfd~ chsy . 
U,2=u,--u. ,=U~ i c~-~,~2)j-{- 12~'~') ch(sd/2)' 

ep u,y2 s v~2 - v ~  ~ ,  (~.24 

d p  
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where  ~ asl d \  as/ d'~ asf d\ .  

Uo2 ---- [D,~ h [dy, a- r ,, t dp ] b (p 
- -  YlY~ [ dz - pSlS~--~-~-~-zj; a p = - -  12. 

We will in t roduce the va r i ab l e  x =y  +d/2 and cons ider  the behavior  of the quantit ies (2.1) and (2.2) c lose  
to the lower wall  for  x ~ 8 ,  where  8 is the effect ive th ickness  of the Knudsen layer .  Note that  the quantity s is 
of the o r d e r  of the inverse  mean f r e e  path, i .e . ,  sd >>1. Using the condition 6 / d  >>1, we obtain that the e x p r e s -  
s.ions (2.1) and (2.2) on the ex te rna l  boundary  of the Knudsen l aye r  r educe  to the expres s ions  (1.9) and (1.11), 
which w e r e  used in the s l ip  p rob lem,  with ( -d /2~?)dp/dz  r ep l aced  by 0uzaS(x)/ax. Then,  the p rob l em of de-  
t e r m i n i n g  uaSz(d/2) r educes  to that cons idered  above,  and we can use  the r e s u l t s  a l r eady  obtained. 

We will find an exp re s s ion  for  the m e a n - m o l a r  ve loc i ty  in the channel. Averag ing  Ulz and u ~  over  the 
c r o s s  sect ion of the channel,  we have 

Using the r e s u l t s  c o r r e s p o n d i n g  to the f i r s t  approximat ion  of the moment  method (express ion  (1.14)), we ob-  
tain a f te r  simp]ie reduct ion  

m d ~ 
< >  . . . .  G - ~ + B d ) ~ - - ( h , y l y , U ~  

where  

U = 2~1~ ~,-~] ~ ~ ~ m~/2p---~ + b2 m~/~p-""'--~ + bib2 p (mi72b) ' 

and o'~. is found f r o m  expres s ion  (1.15). Here ,  in the f inal  express ion  we have omi t ted  t e r m s  ~ (sd) -1 corn- 
leo.red with unity. 

It is a lso of in te res t  to have an expres s ion  for  the d i f ference  between the ve loci t ies  of the components  of 
the mix tu re  ave r aged  over  the c r o s s  sect ion.  Using (2.1) and neglect ing t e r m s  ~ (sd) -1 c o m p a r e d  with unity, 
a f te r  averaging ,  we obtain 

•jas/ d ~ A 0 * i dp 

where  

As a r e su l t ,  we have 

* h h - -  O.~2" = + = 

A * i d p _  [D12h[dy l +~-E~] 
(u)lz - -  <u>2~ = U~ -F ~ [D12]lap p d-, ~ ['-~-z -F ~pglY2 , (2.3) 

wher e 

A cch l b 
% = V#-Z  " +  i--F-X ~ 

Hence,  the  barodif fus ion constant  in the express ion  for the d i f ference  between the ve loci t ies  of the c o m -  
ponents ave r aged  over  the c r o s s  sect ion tu rns  out to be equal to (with opposi te  sign) the diffusion sl ip coef -  
fi:cient (or the coeff icient  of the concentra t ion  gradient  in the express ion  for  the m e a n - m o l a r  ve loc i ty  of the 
mixture) .  Note that  this r e s u l t  ag r ee s  with the conclusions of the t h e r m o d y n a m i c s  of i r r e v e r s i b l e  p r o c e s s e s  
[15], where  al~ " and a p  a r e  c r o s s  coeff ic ients  sa t i s fy ing  O n s a g e r ' s  r e la t ions .  The analys is  given above a!so 
explains why the value of(~p di f fers  f r o m  the barodif fus ion constant  in v iscous  flow GBB~ calcula ted  in [17]. 
Although the 13-moment  Gred approx imat ion  used in this lPaper has enabled us to t ak~  into account the effect  of 
v iscous  m o m e n t u m  t r a n s f e r  in diffusion (which leads to a p  di f fer ing f r o m  the values  given by the f i r s t  approx i -  
mat ion of the C h a p m a n - E n s k o g  method [16]) the r e l a t ions  for  l]~x z t ake  the i r  usual f o r m  i r r e s p e c t i v e  of the 

diffusion ve loc i t ies  of the components .  As a l r eady  ment ioned,  this leads to the condition U 1 2 = U ~ ( d l =  U~ 
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and subsequent  ave rag ing  ove r  the c r o s s  sect ion of the channel  does not change the resu l t .  The express ion  ob-  

ta ined above fo r  the d i f fe rence  between the ave raged  veloci t ies  contains ,  toge ther  with U~2 , the  t e r m  
�9 _ ,  . , { a ~  . . s t d ~  ,~o , v  (sd) U~i~)- -2  "T_When . . . . . . . . . . . . . . .  t h e r e  is  no to ta l  p r e s s u r e  gradient  u,z(~-)~ u , ~ ,  andthis  t e r m  can be neglected.  How~ 

- . . . . . .  uast  d \ - - 
eve r ,  in genera l ,  ,2(--~-) contains  a term-lYr-o-6di~ti0na/to <u>~ <u>~, which makes  a contr ibut ion to the  

d i f fe rence  sdp-~(dp/dz),  c o m p a r a b l e  with the contr ibut ion f r o m  the barodif fus ion t e r m  to U~ 

A Cyl indr ical  Channel.~ Consider  the flow of a mix tu re  in a c i r c u l a r  cy l indr ica l  channel of  r ad ius  R (the 
z axis  is d i rec ted  along the axis  of the cyl inder) .  The equations of momen t s  in a cy l indr ica l  s y s t e m  of co-  
o rd ina tes  take the  f o r m  

~'~ n~n~kT 

aaf~ ---- ~ t , ~  ["7- ~Tr (rQaz) - -  - 7 -  q~z �9 

Far  f r o m  the wal ls  Qt~z = q a z ,  and Eq. (2.5) b e c o m e s  

(2.4) 

(2.5) 

~a  I I f i r z  0 
~ ""yf~ = - -  Ya-~r (rUaz)" (2.6) 

For  a two-component  mix tu re  s imul taneous  solution of  Eqs. (2.4) and (2.6) gives 

u,, - 4~t apd~ (R'--r'-)+ u~(R) + ~-t~,2--ns r,,0 UaS'R '1,2~ ~j [1 _ Is (~) ] Z ,  (,R)]' 
(2.7) 

UI~ = U~ [t Io (sr) ] as Zo(sr). 
- -  I0 (sR)J 4 -  U , 2  ( R ) ) o  ( sR) '  

Hl~z 2 ~ dz Jal~ t (sR)' (2.8) 
r dp 

Hxz = I]lx*-~ II2xz - -  2 dz ' 

where  In(x) a r e  the modif ied B e s s e l  functions.  

In the l aye r  c lose  to the wall  of th ickness  5<<R, Eqs. (2.4) and (2.5) can be r ep l aced  by Eqs. (1.3) and 
(1.4). It can a lso  be  shown that Eqs.  (2.7) and (2.8) on the ex te rna l  boundary  of the Knudsen l ayer  r educe  to 
Eqs. (1.9)-(1.11). Hence,  in this c a s e  a lso  the p r o b l e m s  of determiningU~2 s (R) r e d u c e s  to the p rob l em con-  
s ide red  above of the s l ip  of  a m i x t u r e  on a plane wall .  Averag ing  the exp res s ions  for  u lz(r) and U2z(r) over  
the c r o s s  sec t ion  of the channel,  and us ing  for  as Uaz(R ) the quanti t ies  (1.14) with auzaS(x)/Sx r ep l aced  by (R/  
,2~?)dp/dz we obtain 

( n s ) dp 
<U>~ = --  -~  + B R  ~ - -  (h~glg2U~ 

The expres s ion  for  <Ulz>- (U2z> has  the  s a m e  f o r m  as (2.3) in the p rob l em of the flow i n a p l a n e  channel ,  i .e . ,  
the barodif fus ion constant  a p  = -  o'12 is independent of the channel  geomet ry .  

3. Discuss ion  of the Resul t s  and Compar i son  with Exper iment .  It is convenient  to compa re  the values  of 
0"12 (or Up) obtained above with the r e s u l t s  obtained by  o ther  methods us ing the example  of a mix tu re  with a 
sma l l  r e l a t i ve  d i f fe rence  between the m a s s e s  and the s c a t t e r i n g  c r o s s  sec t ions  of  the molecu les  of the c o m -  
ponents.  For  the s o l i d - s p h e r e  mo lecu l a r  model  the exp re s s ion  for  0"t~. can be r e p r e s e n t e d  in the f o r m  

m 1 - -  rn~ d I - -  d~ b 1 -  b 2 

where  ~ and d a a r e  the m a s s  and effect ive d i a m e t e r  of the molecu les  of  the a - s o r t .  In (3.1) we have a lso  
taken into account the poss ib i l i ty  of sma l l  d i f fe rences  in the na ture  of  the in teract ion between molecu les  of dif-  
f e ren t  so r t s  and the walls .  In Tab le  1 we give values  of a,  b, and e ca lcula ted  using the genera l  exp re s s ions  for  
o"12 obtained by the di f ferent  methods .  For  the ca se  of  the BGK model  the effect ive col l is ion f requenc ies  Yo~ 
and TaB were  spec i f ied  in the f o r m  

(~.~T) S d~f~ [2nkTV/2n d~[~ (d~ 4- d~)/2, 
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where A =16/3 and 16/5 (the f i r s t  and second rows,  respect ively) ,  which cor responds  to the usually employed 
choice of these quantities [13, 7]. For A =16/3 the values of a, b, and c are  pract ica l ly  independent of the con- 
eentras and for A =16/5 in Table 1 we give the values cor responding  to y l=y~=0.5 .  The use of the same 
:model pa ramete r s  to calculate  the second approximation for the McCormack model (the present  paper*) 
showed that for a 50% mixture the resu l t s  a re  prac t ica l ly  insensitive to the choice of the model pa ramete r s .  
This is also conf i rmed by calculations for the case  when Ta~ and Taft are  specified in the fo rm descr ibed in 
[10] for the th i rd -o rde r  model. Two approximations of the va r i a t iona lme thod  cor respond  to the resul ts  in [14] 
consider ing and ignoring cor rec t ions  of the o rder  of the thermodiffusion constant  (taking these cor rec t ions  into 
account in our scheme would co r respond  to the use of the McCormack model with N=3). In the last  column of 
Table 1 we give empir ica l  values of a and b obtained by process ing  experimental  data on the diffusion-phoresis  
of oil drops in gaseous mixtures  of nonuniform concentrat ion [22].  

It follows f r o m  the resu l t s  that the different methods of calculation give fa i r ly  c lose values of the coef-  
ficient a ,  but the BGK model seems to be less  sa t i s fac tory  in this respec t .  The coefficient b is more  sensit ive 
1~o the chosen approximation,  and methods which do not take into account the variat ion in the distribution func-  
~ion in the Kaudsen layer  [1, 12] give quite different resu l t s .  

Note that the resu l t s  of the present  paper and the calculations based on the BGK model lead to a weaker 
dependence on the differences between the ref lect ion coefficients at the wall. 

The c loseness  of the resu l t s  of the f i r s t  approximation of the present  paper and of the variat ional  method 
is noteworthy. An analysis  of the general  expression for cr~ r) in [14] shows that when the thermodiffusion co r -  
rec t ions  a re  neglected the cor responding  expression for c~12 (for bl=b2=1)  in our notation has the fo rm 

~1~ = ~ + m, - m0 _ t (~,~2 + ~,~2)'. 
(rn)y 2 

On the other hand, the pa ramete r  A in Eq. (1.15) var ies  in the range 0.88-1.15 for ar .b[trary ra t ios  of the 
:masses and the concentrat ions of the components.  For an isotopic mixture A = ( 5 ~ ) ~ / ~ / 4 = 0 . 9 9 ,  which a l s o  
demonst ra tes  the above-ment ioned c loseness  of the resu l t s .  

It should be noted that for  actual interaction potentials of the molecules the thermal-dif fusion cor rec t ions ,  
:as a rule ,  a re  cons iderably  less than for the sphere  model,  so that the use of the second approximation of the 
:method of moments  may be more  important  in some cases  than taking these cor rec t ions  into account. 

A wide- ranging  compar ison of the experimental  and theoret ical  values of el2 for a number of mixture s 
has been made in [19, 21]. These mainly use the resu l t s  on diffusion-phoresis  of suspended part icles [22] and 
:measurements of the diffusion baroeffect  [2, 20]. Within the limits of the accu racy  of the experimental  datathe 
theore t ica l  r esu l t s  for r (like calculations based on the variat ional  method [14]) are  in sa t i s fac tory  agreement  
with experiment.  Mixtures with v e r y  close molecular  masses  of the components (N 2-  C2H4, CO 2-  C3H8, A r -  
ced) a re  of par t icular  interest .  For these mixtures  the direction of motion of the part icles  in diffusion-phoresis  
and also the diffusion baroeffeet  (the occur rence  of a difference in p r e s s u r e  for flow through a capi l la ry  of a 
gaseous mixture of nonuniform concentration) have a sign which is opposite to that which is predicted by ele-  
men ta ry  theory  [1]. Table 2 shows that the resu l t s  of calculations of the values of ~1~ for three mixtures a re  
i[n sa t i s fac tory  agreement  with experimental  data. In the calculations we used the molecular  interaction pa ram-  
e ters  descr ibed by the Lennard-Jones  potential. The quantitative agreement  with experiment can be improved 
by assuming  that the nature  of the ref lect ion of the molecules f rom the walls is different. In the last  two rows 
of Table 2 we give values of al~ in the f i rs t  and second approximations for which we used experimental  values 
of K =bl /b  2 obtained in [4] f r o m  the resu l t s  of measurements  of the separat ion of mix tu re s  of N~-C~H 4 {K = 
1.035) and A r - C O  2 (K= 1.011) for molecular  flow of these mixtures  in c i rcu la r  cyl indrical  capi l lar ies  (Kn >>1). 

Experiments  on the separat ion of a mixture in another l imiting region (Kn<<l) can also be used in pr in-  
ciple to determine the barodiffusion constant  ap  [12, 23]. Unfortunately, the resu l t s  obtained in [4] cannot be 
extended into the region of fa i r ly  smal l  Knudsen numbers .  Never theless ,  the observed change in sign of the 
effect for an N2-C2H 4 mixture  for Kn ~ 1 and the order  of magnitude of the effect for Kn < I are  in sa t i s fac tory  
agreement  with calculat ions u s i n g t h e  value U p = -  crl~. A s imi lar  change in sign, not observed in [4], would be 
expected for Kn < 1 in an Ar  - CO z mixture ,  to which attention has a l ready been drawn in [23]. 

Appendix. We will calculate  the ra te  of diffusion slip in the second approximation (k =0.1), when h a = 
,,O'[a 0a =~ + a ~rv~ c ax)" Instead of the equations for the coefficients a ,~, and a ~,~, is more  convenient f i rs t  of all to 
deal with a sys t em of equations for the moments  M~),  which are  defined in the fo rm 

*The resu l t s  of the f i r s t  approximation,  as is seen f rom (1.15), genera l ly  are  independent of the a rb i t r a ry  
pa rame te r s  of the model. 
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] M(~ ~) = z~ -~/~ c:~:h~ (x,  ea~) exp ( - -  c ~ )  dc~x :+.fc~h+~ (x, c=~) exp ( - -  c L ) d % ~  . 
-- 0 

M(0), I I a z  =p(~ M~), and Q a z  = M ~ ) , m u s t  In  th i s  c a s e  the equa t ions  of  m o m e n t s  (1.3) and (1.4), in which  q~z = "T _~ 
be  supp l emen ted  b y  two equat ions  of  the  f o r m  

Ox r 1 

0 | ai/2a, ,'j~ f I I ; : z )  
0---~ (q~zz - -  Q ~ )  = " ~  I.'~ r~  ~ ~ - -  3 , 

w h e r e  M a = 2 M ( ~ ) ;  y a = T c a ~  +7crf l  (a ,  ~ = 1 ,  2). 

Condit ion (1.12) l eads  to the fo l lowing r e l a t i o n s  fo r  the m o m e n t s  on the wal l  (x = O): 

(4 : - -  Z~) qaz (0) -~- b~a  t/2 IIuxz (0) (2 - -  a )  Qaz (0) = 0, 
Fg 

. II~z(0) . . 
2~tl~qg z (0)]-- b~ (4 - -  on) ~ --I- % (2 - -  z~) M a (0) = O. (A.1) 

As a r e s u l t ,  to  d e t e r m i n e  qc~z, Q a  z,  Q a z ,  IIaxz~ and M a ( a  =1.2) we have  a s y s t e m  of  eight equa t ions  
with b o u n d a r y  cond i t ions  (A. 1), an d the  condi t ions  that  the r e q u i r e d  funct ions  should  be bounded as  x ~ ~.  
This  s y s t e m  is so lved  by  r e d u c i n g  it to an e i g h t - o r d e r  equat ion in Qaz -  The  r e s u l t s  obta ined  fo r  the c a s e w h e n  
auaS ( x ) / a x  =0 can  be  r e p r e s e n t e d  in t h e ' f o r m  

s 
ai /2A* rTO (A.2) q ~  = P l /2~  ~ ch oxp ( -  x~x) + ~ ,~ ~ 2 ,  

h=l 
3 

Q2z = - -  P~/2n, E Ca exp (--  s -]- pgi. ]2 (A* - -  i) U~ 

2 
Hlxz------ H~x~ = g~ ~ Ch~h exp (--  ~kx), 

3 
D*~l Z Ch~2fuh exp (--~,~x), 

3 
' ~  [2D*v~ ~2~ t ) e  3gvl~ 
h=l  \ P a  ~ Pa ] 

w h e r e  g = s - 2 D ;  D* "~ t . ~ p~p~ . 2 2 ' p [D~]:~ 

~* ---- y~ lp~  --b y~/p~ -q- l l g  (a, [3 = i, 2; [~ -~ a). 

In this  c a s e  A k a r e  the pos i t ive  r o o t s  o f  the equat ion 

~s _ Z1~4 -t- Z~}~ 2 - -  Z8 = 0, 

w h e r e  

= = PlP27iY2, Zs = s-~I~YiYr.  ". Z, Dy* -t- [~,7~ + [~,Y~, Z,  D ~ + ~ -t- s 2 (~u + [},y2) _]_ -2-2 2 2 

Subst i tut ing the  b o u n d a r y  condi t ions  (A.1) into (A.2) we obta in  a s y s t e m  of four  l inea r  a l g e b r a i c  equat ions  
fo r  C1, C2, C3, and A * .  Note that  to d e t e r m i n e  the r a t e  o f  d i f fus ion s l ip  u D it is suf f ic ient  to find the cons tant  

A* .  In fac t  

u .  = lira (~i-~/2y~q~ + ~ i - '%~q~)  = (AO - -  y..) U[~ 
x~oo 

o r  

vrrl2 ~ y~ ~ A* 
YlY~ 
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Because of the complexity of the expression for A* described using the corresponding fourth-order  deter-  
rninants, it will not be given here.  The results of specific calculations of cr12 in the f irs t  and second approxi- 
mation for certain special cases are  given in Tables 1 and 2. 
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